DCV-003-2013002

Seat No.

B. Sc. (Sem. III) (CBCS) Examination

July - 2022 Physics : 301

(Electricity, Magnetism & Semiconductor Electronics)
[New Course]

Faculty Code: 003 Subject Code: 2013002

Time : $2\frac{1}{2}$ Hours] [Total Marks: 70 **Instructions**: (i) Attempt any five questions. (ii) Symbols have their usual meaning. (iii) Figures on right hand side indicate full marks. (a) Answer the following questions: 4 1 Fill up the blank : $\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) = \overrightarrow{b} \cdot (\overrightarrow{c} \times \overrightarrow{a}) =$ Fill up the balnk : $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} - \overrightarrow{a} = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{c} = (\overrightarrow{c} \cdot \overrightarrow{c}) \overrightarrow{c} = (\overrightarrow{c} \cdot \overrightarrow{c}) \overrightarrow{c} = (\overrightarrow{c} \cdot \overrightarrow{c}) \overrightarrow{c} =$ (2)"The vector triple product is not associative", express (3) this sentence mathematically. Fill up the blank: A vector which satisfy condition $\overrightarrow{\nabla}, \overrightarrow{V} = 0$, is called vector. Find gradient of $f(x, y, z) = x^2 + y^2 + z^2$. 2 (b) 3 Explain scalar triple product. (c) Describe curl of a vector point function. 5 2 Answer the following questions: 4 (a) Fill up the blank: Curl of a vector function is a What name is given to the sentence: "The line integral along some selected curve of the gradient is given by difference of the value of the function at the boundaries". Express this equation in words : $\iint (\nabla \times \overrightarrow{V}) da = \overrightarrow{V} \cdot \overrightarrow{dl}$. (3) State the expression of gradient theorem.

	(b)	Calculate the divergence of $V = xyi + yzj + xz\hat{k}$.	2
	(c)	Prove that $\nabla \cdot (f\overrightarrow{A}) = f(\nabla \cdot \overrightarrow{A}) + \overrightarrow{A}(\nabla f)$.	3
	(d)	Explain the fundamental theorem of curl.	5
3	(a)	Answer the following questions:	4
		(1) What is \in_0 in the expression of Coulomb's law?	
		(2) Fill up the blank: Several charges $q_1, q_2, q_2, \dots, q_n$ are	
		distributed at a distances $\overrightarrow{r_1}, \overrightarrow{r_2}, \overrightarrow{r_3}, \dots, \overrightarrow{r_n}$, from Q . The total force on Q is calculated by principle. (3) What is the unit of line charge density? (4) Electric field lines start from Complete the sentence.	
	(b)	The potential due to an isolated point charge at a point 20 cm from the charge is 400 volt. Calculate the magnitude	2
		of the charge. $\in_0 = 8.85 \times 10^{-12} \text{ C}^2 / \text{Nm}^2$.	
	(c) (d)	Explain electric field of plane charge sheet. Explain electric potential and comment on it.	3 5
	()	1 0 11	
4	(a)	Answer the following questions: (1) Fill up the blank: If field lines are parallel to each other, such a field is called field.	4
		(2) What name is given to the expression : $\nabla \cdot \overrightarrow{E} = \frac{\rho}{\epsilon_0}$?	
		(3) Fill up the blank: The electric field inside a spherical charged shell is	
		(4) Fill up the blank: The electric flux is quantity.	
	(b)	What is the electric field intensity on the surface of a uniform charged sphere with charge $300 \times 10^{-6} C$ and radius	2
		8 cm ? $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / \text{Nm}^2$.	
	(c)	Describe divergence of electric field.	3
	(d)	Describe energy of a point charge distribution.	5
5	(a)	Answer the following questions:	4
		(1) Fill up the blank: The formula $P = qBr$ is known as formula.	
		(2) What is volume current density?	
		(3) State equation of continuity.	
		(4) Write expression of Biot-Savert's law.	

2

[Contd...

DCV-003-2013002]

	(b)	Calculate the magnetic field due to a long thin wire carrying current 15 Amp at distance 0.01 m from the wire.	2
		$\mu_0 = 4\pi \times 10^{-7} \text{ N/A}^2$.	
	(c) (d)	Derive basic equation for stationary current. Explain magnetic field above a straight wire.	3 5
6	(a)	Answer the following questions:	4
		(1) What is the value of μ_0 ?	
		(2) What is the divergence of magnetic field B?(3) What is the relation between electric field E and potential V?	
		(4) State the Ampere's line integral theorem.	
	(b)	Find the magnetic field at a distance 5 m from a long straight wire carrying a steady current 5 Amp.	2
	(c)	Discuss: Lorentz force law.	3
	(d)	Discuss: Boundary condition in magnetostatics.	5
7	(a)	Fill up the blank:	4
	(-)	(1) In photo diode the reverse current depends only on the of the light incident on the junction.	
		(2) In photo diode dark current flow due to the thermally generated carriers.	
		(3) The varactor diode is also known as capacitor.(4) Solar cell is used for converting radiation energy into energy.	
	(b)	What is the resonance frequency of series $L-C$ circuit?	2
	(0)	What is the resonance frequency of series $L=C$ effects: $L=200 \mu H$, $C=200 pF$.	_
	(c)	Explain photo diode characteristics.	3
	(d)	Discuss : L - R ac circuit.	5
8	(a)	Fill up the blank:	4
	()	(1) The product of open circuit voltage and short circuit current gives the of solar cell.	
		(2) In pure inductor, voltage leads the current by degree.	
		(3) In series RC circuit, voltage the current.	
		(4) In LCR circuit, resonance frequency is given as $f_0 =$	
	(b)	At what frequency does a 1000 ohm resistance in series	2
	(5)	with a 2H coil offer an impedance of 1181 ohm?	•
	(c)	Explain construction of solar cell.	3 5
	(d)	Explain LCR series ac circuit.	3

9	(a)	Answer the following questions:	4
	` ´	(1) Fill up the blank: The ratio of change in collector	
		current to the change in base current is known as	
		(2) Fill up the blank: The region between cut off and	
		saturation point of transistor characteristics is known as	
		region.	
		(3) What is called faithful amplification?	
		(4) The stability factor indicates the change in collector current due to the change in Complete the sentence.	
	(b)	In a transistor circuit collector load is 5000 ohm whereas zero signal collector current is 1 mA. What will be the	2
		operating point if $V_{CC} = 10 V$?	
	(c)	Why stabilization of operating point is necessary?	3
	(d)	Discuss practical circuit of transistor amplifier and explain	5
	` '	functions of biasing circuit, input capacitor, emitter bypass compacitor and coupling capacitor.	
10	(a)	Answer the following questions:	4
	` '	(1) What is the general expression of stability factor?	
		(2) What is smallest value of stability factor s?	
		(3) The DC load line on the output characteristics of a transistor circuit is give the values of, complete this sentence.	
		(4) What is frequency response?	
	(b)	In a CE pnp transistor circuit, $V_{CC} = 12 V$ and	2
		$R_C = 6000$ ohm. Draw the dc load line.	
	(c)	Explain thermal runaway.	3
	(d)	Explain voltage divider bias method for stabilization.	5